Вы здесь: Главная -> Новости -> -> -> Математики показали плоский тор
Новости науки
2016:
78
2015:
12345678910
2014:
123456789101112
2013:
123456789101112
2012:
123456789101112
2011:
123456789101112
2010:
123456789101112
2009:
123456789101112
2008:
123456789101112
2007:
123456789101112
2006:
123456789101112
Рейтинг@Mail.ru

Математики показали плоский тор


Математики впервые показали изображение плоского тора - абстрактной математической фигуры, впервые предсказанной математиками Николасом Кейпером и нобелевским лауреатом Джоном Нэшем в середине прошлого века. Работа опубликована в журнале Proceedings of the National Academy of Sciences, ее краткое описание можно прочитать на сайте французского Национального центра научных исследований.

Плоский тор - это фигура, топологически эквивалентная квадрату. Если представить себе квадрат и соединить его верхнюю границу с нижней, мы получим что-то вроде цилиндра. Если затем соединить края цилиндра друг с другом, то получится тор - фигура, похожая на бублик. Однако, если на исходный квадрат нанести вертикальные и горизонтальные линии, то вертикальные линии в ходе преобразования сохранят свою длину, в то время как горизонтальные окажутся растянутыми. Это происходит потому, что невозможно соединить края цилиндра, не растягивая его.

Нэш и Кейпер в середине пятидесятых годов прошлого века доказали существование такого тора в трехмерном пространстве, в котором ни горизонтальные, ни вертикальные линии не будут растянуты (в четырехмерном такой тор строится довольно просто). Такую фигуру называли плоским тором. Позднее, в 70-80е годы советский математик Михаил Громов разработал метод, который мог помочь построить такую фигуру. Французским математикам удалось сделать на основе метода Громова алгоритм, который позволил получить изображение фигуры.

Алгоритм действовал следующим образом. Он начинал с обычного гладкого тора и сминал его так, чтобы вертикальные линии исходного квадрата приблизились по длине к растянутым горизонтальным. Такое "сморщивание" последовательно совершалось до тех пор, пока фигура не достигала желаемой степени подробности.

Полученная компьютерная трехмерная модель состояла из почти двух миллиардов узлов. Очертаниями она напоминала тор, хотя и имела необычные свойства. Поверхность модели была периодичной (самоподобной), и этим напоминала поверхность фракталов, но при этом, в отличие от фракталов, все равно оставалась гладкой.

Источник: Лента.ру



главная :: наверх :: добавить в избранное :: сделать стартовой :: рекомендовать другу :: карта сайта :: создано: 2012-05-01T00:00:00+00
Наша кнопка:
Научно-образовательный портал